The New Hybrid Method for Classification of patients by gene Expression Profiling
نویسندگان
چکیده
Genetic researches have gradually become an area which is intensively studied on in recent years. The reason of that is the fact that a lot of diseases and features are transferred to the other generations by genes. These transfers are generally at the base of diseases. The evaluation of the input which is reached as the result of the researches is also accepted as a separate field. The aim of this study is to develop a model which enables the best classification of the patients by DNA microarray expression inputs. For this purpose, the classification which is based on Unsupervised Learning has mainly been used, by bringing together various methods. The Independent Components Analysis is used for dimension reduction, Kohonen Map Method is used for clustering and Random Forest Method is used for classification purposes. The model which is formed by combining these methods and very popular classification method Support Vector Machines (SVMs) has been studied and their classification performance is compared by True Classification Rate (TCR) on two real publicity data sets. The highest value that TCR can take on is one. The aim is to close this value to one. By the help of the model proposed in this study, we expect a reduction in the cost of these researches and aim to prevent wrong diagnoses as much as
منابع مشابه
Identification of Alzheimer disease-relevant genes using a novel hybrid method
Identifying genes underlying complex diseases/traits that generally involve multiple etiological mechanisms and contributing genes is difficult. Although microarray technology has enabled researchers to investigate gene expression changes, but identifying pathobiologically relevant genes remains a challenge. To address this challenge, we apply a new method for selecting the disease-relevant gen...
متن کاملExpression Profiling of Microarray Gene Signatures in Acute and Chronic Myeloid Leukaemia in Human Bone Marrow
Background Classification of cancer subtypes by means of microarray signatures is becoming increasingly difficult to ignore as a potential to transform pathological diagnosis nonetheless, measurement of Indicator genes in routine practice appears to be arduous. In a preceding published study, we utilized real-time PCR measurement of Indicator genes in acute lymphoid leukaemia (ALL) and acute m...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملخوشهبندی دادههای بیانژنی توسط عدم تشابه جنگل تصادفی
Background: The clustering of gene expression data plays an important role in the diagnosis and treatment of cancer. These kinds of data are typically involve in a large number of variables (genes), in comparison with number of samples (patients). Many clustering methods have been built based on the dissimilarity among observations that are calculated by a distance function. As increa...
متن کاملQuantitation of ergosterol content and gene expression profile of ERG11 gene in fluconazole-resistant Candida albicans
Background and Purpose: The frequency of opportunistic fungal infections in immunocompromised patients, especially by Candida species, has sharply increased in the last few decades. The objective of this study was to analyse the ergosterol content and gene expression profiling of clinical isolates of fluconazole resistant Candida albicans. Materials and Methods: Sixty clinical samples were ide...
متن کاملSystematic enrichment analysis of microRNA expression profiling studies in endometriosis
Objective(s): The purpose of this study was to conduct a meta-analysis on human microRNAs (miRNAs) expression data of endometriosis tissue profiles versus those of normal controls and to identify novel putative diagnostic markers. Materials andMethods: PubMed, Embase, Web of Science, Ovid Medline were used to search for endometriosis miRNA expression profiling studies of endometriosis. The miRN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Transactions of the SDPS
دوره 14 شماره
صفحات -
تاریخ انتشار 2010